Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Development and applications of plasma X-ray lasers

Nishikino, Masaharu; Ochi, Yoshihiro; Hasegawa, Noboru; Kawachi, Tetsuya; Ishino, Masahiko; Imazono, Takashi; Tanaka, Momoko; Sato, Katsutoshi; Yamamoto, Minoru; Oba, Toshiyuki; et al.

no journal, , 

Recent Progress in the development of laser-driven plasma soft X-ray laser (XRL) and the applications are presented. In the source development, TOPAZ laser using Nd:glass zigzag slab amplifiers with 10 J, 0.1 Hz repetition-rate routinely provides the fully spatial coherent X-ray laser at 13.9 nm for the applications. The bright, coherent, and picoseconds X-ray pulse can be used in a variety of applications such as X-ray speckle measurement and interferometer for probing materials, diffraction imaging, nano-scale fabrication, radiation biology, and so on. In order to extend the use of XRLs, now we are constructing new XRL beam lines for the optical pump and XRL probe experiment.

Oral presentation

Studies for isotope separation of radioactive waste

Yokoyama, Keiichi; Kasajima, Tatsuya; Matsuoka, Leo; Hashimoto, Masashi; Tsubouchi, Masaaki; Sugiyama, Akira; Yokoyama, Atsushi

no journal, , 

Technological innovation in the isotope separation of long-lived fission products is demanded. Quantum control may provide a breakthrough in such technology. Recently, we proposed a novel scheme based on cascaded excitation of rotation in diatomic molecules. Both (1) demonstration of quantum walk by Raman transition using a conventional Ti:Sapphire laser and (2) development of high-power terahertz-wave source are concurrently proceeded. (1) Cascaded excitation of rotation in the nitrogen molecule N$$_{2}$$ will be induced by impulsive Raman transitions. At present, we are developing a method to observe the incoherent population distribution among rotational states, which involves femotosecond coherent anti-Stokes Raman scattering. Also, current status of (2) development of high-power terahertz-wave source will be briefly introduced, including optical rectification in ZnTe and LiNbO$$_{3}$$ crystals and a plan for construction of a high-power, picosecond laser as a driver laser.

2 (Records 1-2 displayed on this page)
  • 1